Anomaly Detection for OOD and Novel Category Detection

Thomas G. Dietterich, Oregon State University

tgd@cs.orst.edu

@tdietterich

Grad students: Andrew Emmott, Si Liu, Risheek Garrepalli, Alex Guyer, Dan Hendrycks Faculty members: Alan Fern, Debashis Mondal

Thank you Dan Hendrycks and Balaji Lakshminarayanan for advice and suggestions

AD4SD

Motivating Example: Automated Counting of Freshwater Macroinvertebrates

- Goal: Assess the health of freshwater streams
- Method:
 - Collect specimens via kicknet
 - Photograph in the lab
 - Classify to genus and species
- BugID Project
 - 54 classes of interest to the EPA
 - accuracy $\approx 90\%$
 - Larios, N., Soran, B., Shapiro, L., Martínez-Muños, G., Lin, J., Dietterich, T. G. (2010). Haar Random Forest Features and SVM Spatial Matching Kernel for Stonefly Species Identification. *IEEE International Conference on Pattern Recognition (ICPR-2010).*
 - Lin, J., Larios, N., Lytle, D., Moldenke, A., Paasch, R., Shapiro, L., Todorovic, S., Dietterich, T. (2011). Fine-Grained Recognition for Arthropod Field Surveys: Three Image Collections. First Workshop on Fine-Grained Visual Categorization (CVPR-2011)
 - Lytle, D. A., Martínez-Muñoz, G., Zhang, W., Larios, N., Shapiro, L., Paasch, R., Moldenke, A., Mortensen, E. A., Todorovic, S., Dietterich, T. G. (2010). Automated processing and identification of benthic invertebrate samples. *Journal of the North American Benthological Society*, 29(3), 867-874.

Problem: There are $\approx 76,000$ species of freshwater insects worldwide

- 1,200 species in US
- Field samples may contain other things
 - leaves
 - trash
- Simple estimate of equal error rate for novel classes vs. the 54 classes was 20% (in 2011)
 - classifier is not usable without addressing the novel class problem
- Open Category Problem

Open Set/OOD Classification Problem

- Arises in any application of classification in an open world
 - Novel obstacles in self-driving cars
 - Novel diseases in medical imaging
 - Novel products in online marketplaces
 - Novel cyber attacks
- Claim: Every deployed ML classifier should include a competence model that can detect when new queries are far from the training data

Two Problem Formulations: OOD and Open Category

Out-of-Distribution Problem

- Training:
 - Data: $(x_1, y_1), ..., (x_N, y_N)$ drawn from D_0
 - $y_i \in \{1, \dots, K\}$
- Testing:
 - Data: Mixture D_m of data from D_0 and D_a
 - $(x, y) \sim D_a$ belong to a different data set
- Goal:
 - Given a query x_q , does it belong to D_a or D_0 ?
 - If from D_a , REJECT as alien
 - Else classify using a classifier trained on $D_0 \ {\rm data}$

Novel Category / Open Set Problem

- Training:
 - Data: $(x_1, y_1), \dots, (x_N, y_N)$ drawn from D_0
 - $y_i \in \{1, \dots, K\}$
- Testing:
 - Data: Mixture D_m of data from D_0 and D_a
 - (x, y) ~ D_a belong to new classes not seen during training ("alien categories")
- Goal:
 - Given a query x_q , does it belong to D_a or D_0 ?
 - If from D_a , REJECT as alien
 - Else classify using a classifier trained on D_0 data

OOD and Novel Category Metrics

- AUROC: Area under the ROC curve for the binary decision
 - OOD: Domain A vs Domain B
 - Novel Category: Known vs Unknown
 - We treat the anomalies as the positive class
- Detection rate at fixed false alarm rate. Maximize TPR@10%FPR
 - Maximize correct OOD/Novel Category detections subject to a constraint that the false positive rate is \leq 0.10.
- False alarm rate at fixed missed alarm rate: Minimize FPR@95%TPR
 - Detect 95% of OOD/Novel Category examples while minimizing false positives
 - Most relevant to AI Safety and Trustworthy Systems

Outline

- Theoretical Approaches to Anomaly Detection
- Deep Anomaly Detection in Computer Vision
- Anomaly Detection based on Supervised Classifier Logit Scores

Theoretical Approaches to Anomaly Detection

Distance-Based Methods

- Anomaly score $A(x_q) = \min_{x \in D} ||x_q - x||$
- Density Estimation Methods
 - Surprise: $A(x_q) = -\log P_D(x_q)$
 - Model the joint distribution $P_D(x)$ of the input data points $x_1, ... \in D$

Quantile Methods

- Find a smooth function f such that $\{x: f(x) \ge 0\}$ contains 1α of the training data
- Anomaly score A(x) = -f(x)

Reconstruction Methods

- Train an auto-encoder: $x \approx D(E(x))$, where E is the encoder and D is the decoder
- Anomaly score

$$A(x_q) = \left\| x_q - D\left(E(x_q) \right) \right\|$$

Approach 1: Distance-Based Methods

- Define a distance $d(x_i, x_j)$
- $A(x_q) = \min_{x \in D} d(x_q, x)$
- Requires a good distance metric

Isolation Forest [Liu, Ting, Zhou, 2011]

- Approximates L1 Distance
 - (Guha, et al., ICML 2016)
- Construct a fully random binary tree
 - choose attribute *j* at random
 - choose splitting threshold θ uniformly from $[\min(x_{.j}), \max(x_{.j})]$
 - until every data point is in its own leaf
 - let $d(x_i)$ be the depth of point x_i
- repeat L times
 - let $\overline{d}(x_i)$ be the average depth of x_i
 - $A(x_i) = 2^{-\left(\frac{\overline{d}(x_i)}{r(x_i)}\right)}$
 - $r(x_i)$ is the expected depth

Approach 2: Density Estimation

- Given a data set $\{x_1, \dots, x_N\}$ where $x_i \in \mathbb{R}^d$
- We assume the data have been drawn iid from an unknown probability density: x_i ~ P(x_i)
- Goal: Estimate P
- Anomaly Score: $A(x_q) = -\log P(x_q)$
 - "surprisal" from information theory
- Why density estimation?
 - Gives a more global view by combining distances to all data points

Approach 3: Quantile Methods

- Vapnik's principle: We only need to estimate the "decision boundary" between nominal and anomalous
- Surround the data by a function f that captures $1-\epsilon$ of the training data
 - One-Class Support Vector Machine (OCSVM)
 - *f* is a hyperplane in "kernel space"
 - Support Vector Data Description (SVDD)
 - *f* is a sphere is "kernel space"
- Issue
 - Need to choose ϵ at learning time rather than run time

Approach 4: Reconstruction Methods

Autoencoders

- Encoder: z = E(x)
- Decoder: $\hat{x} = D(z)$

Linear Autoencoder == Principal Component Analysis

- PCA:
 - Let the input dimension be \boldsymbol{d}
 - Choose a latent dimension ℓ
 - Find the $d \times \ell$ matrix W that minimizes the squared reconstruction error
 - $\min_{W} \sum_{i} ||x_i WW^{\mathsf{T}}x_i||^2$
 - This can be done using the Singular Value Decomposition
 - It can also be viewed as fitting a multi-variate Gaussian to the data and then keeping only the ℓ dimensions of highest variance

AD4SD

Application: Finding Unusual Chemical Spectra

- NASA Mars Science Laboratory ChemCam instrument
 - Collects 6144 spectral bands on rock samples from 7m distance using laser stimulation
 - Goal: active learning to find interesting spectra
 - DEMUD
 - Incremental PCA applied to samples one at a time
 - Fit only to the samples labeled as "uninteresting" by the user
 - Show the user the most un-uninteresting sample (sample with highest PCA reconstruction error)
 - Rapidly discovers interesting samples
 - Wagstaff, et al. (2013)

(a) Effort required to discover magnesite.

Benchmarking Study

[Andrew Emmott, 2015, 2020]

- Distance-Based Methods
 - k-NN: Mean distance to k-nearest neighbors
 - LOF: Local Outlier Factor (Breunig, et al., 2000)
 - ABOD: kNN Angle-Based Outlier Detector (Kriegel, et al., 2008)
 - IFOR: Isolation Forest (Liu, et al., 2008)
- Density-Based Approaches
 - RKDE: Robust Kernel Density Estimation (Kim & Scott, 2008)
 - EGMM: Ensemble Gaussian Mixture Model (our group)
 - LODA: Lightweight Online Detector of Anomalies (Pevny, 2016)
- Quantile-Based Methods
 - OCSVM: One-class SVM (Schoelkopf, et al., 1999)
 - SVDD: Support Vector Data Description (Tax & Duin, 2004)

Benchmarking Methodology

- Select 19 data sets from UC Irvine repository
- Choose one or more classes to be "anomalies"; the rest are "nominals"
- Manipulate
 - Relative frequency
 - Point difficulty
 - Irrelevant features
 - Clusteredness
- 20 replicates of each configuration
- Result: 11,888 Non-trivial Benchmark Datasets

Analysis of Variance

• Linear ANOVA

•
$$\log \frac{AUC}{1-AU} \sim rf + pd + cl + ir + pset + algo$$

- rf: relative frequency
- pd: point difficulty
- cl: normalized clusteredness
- ir: irrelevant features
- mset: "Parent" set
- algo: anomaly detection algorithm
- Assess the *algo* effect while controlling for all other factors
- *AUC*: area under the ROC curve for the nominal vs. anomaly binary decision

Benchmarking Study Results

- 19 UCI Datasets
- 9 Leading "feature-based" algorithms
- 11,888 non-trivial benchmark datasets
- Mean AUC effect for "nominal" vs. "anomaly" decisions
 - Controlling for
 - Parent data set
 - Difficulty of individual queries
 - Fraction of anomalies
 - Irrelevant features
 - Clusteredness of anomalies
- Baseline method: Distance to nominal mean ("tmd")
- Best methods: K-nearest neighbors and Isolation Forest
- Worst methods: Kernel-based OCSVM and SVDD

Mean AUC Effect

Outline

- Theoretical Approaches to Anomaly Detection
- Deep Anomaly Detection in Computer Vision
- Anomaly Detection based on Supervised Classifier Logit Scores

Deep Anomaly Detection in Image Classification

- Input image *x*
- Network backbone, also called the "encoder": z = E(x)
- Latent representation z
- Logits $\ell_k = w_k^{\mathsf{T}} z$
- Predicted probabilities

$$\hat{p}(y = k | x) = \frac{\exp \ell_k(z)}{\sum_{k'} \exp \ell_{k'}(z)}$$

Approach 1: Distance-Based Methods

 Using k nearest neighbors in the z space does not work well in our experience

Approach 2: Density Estimation Methods

- Deep Density Estimation: Seeks to model P(x) in the image space
 - These have not worked well
 - Le Lan & Dinh (2021) show that the representation is critical for density estimation. The image space lacks an appropriate "neighborhood structure"
- Methods that fit a classifier and then estimate a density P(z)
 - Open Hybrid (Zhang, Li, Guo, Guo, 2020)
 - Mahalanobis (Lee, Lee, Lee, Shin, 2018)

Open Hybrid: Classification + Density Estimation (Zhang, Li, Guo, Guo, 2020)

- Residual Flow Deep Density Estimator
 - (Chen, Behrmann, Duvenaud, et al. NeurIPS 2019)
- Standard Cross-Entropy Supervised Loss
 - Claim: This helps focus P(x) on relevant aspects of the images
- Anomaly Score: $A(x_q) = -\log P(x_q)$

AD4SD

Open Hybrid Results

 6 Known and 4 Unknown classes

AUC	MNIST	SVHN	CIFAR-10
$1 - \max_k \hat{p}(y = k x_q)$	0.978	0.886	0.677
OpenHybrid: $-\log P(x_q)$	0.995	0.947	0.883

 4 Known and many unknown classes drawn from CIFAR-100

AUC	CIFAR+10	CIFAR+50
$1 - \max_k \hat{p}(y = k x_q)$	0.816	0.805
OpenHybrid: $-\log P(x_q)$	0.962	0.955

Approach 3: Density Quantile Methods: Deep SVDD (Ruff, et al. ICML 2018)

- The method is somewhat tricky to work with
 - Set c as the mean of a small set of points passed through the untrained network
 - No bias weights
 - These help prevent "hypersphere collapse"

Approach 4: Reconstruction Methods

- NavLab self-driving van (Pomerleau, 1992)
 - Primary head: Predict steering angle from input image
 - Secondary head: Predict the input image ("autoencoder")
 - $A(x_q) = \|x_q \hat{x}_q\|$
 - If reconstruction is poor, this suggests that the steering angle should not be trusted
- Principle: Anomaly Detection through Failure
 - Define a task on which the learned system should fail for anomalies

Pomerleau, NIPS 1992

Deep Autoencoders

- These have generally not worked well for anomaly detection
- It is difficult to keep the autoencoder from learning to be a general image compression algorithm
 - It doesn't fail on novel images!

Outline

- Theoretical Approaches to Anomaly Detection
- Deep Anomaly Detection in Computer Vision
- Anomaly Detection based on Supervised Classifier Logit Scores

A Surprising Finding: Deep Classifiers Achieve Excellent Anomaly Detection

- Vaze, Han, Vedaldi, Zisserman (2020): "Open Set Recognition: A Good Classifier is All You Need"
 - arXiv 2110.06207
- Carefully train a classifier using the latest tricks
 - Standard cross-entropy combined with the following:
 - Cosine learning rate schedule
 - Learning rate warmup
 - RandAugment augmentations
 - Label Smoothing
- Anomaly score: max logit
 - $-\max_k \ell_k$

Protocol from Neal et al. (2018)

Vaze, et al.: Three Large Open Set Benchmarks

- Novel class difficulty based on semantic distance
 - CUB: Bird species
 - Air: Aircraft
 - ImageNet

Why?

How are open set images represented by deep learning?

- DenseNet with 384-dimensional latent space.
- CIFAR-10: 6 known classes, 4 novel classes
- UMAP visualization
- Light green: novel classes
- Darker greens: known classes
- Note that many novel classes stay toward the center of the space; others overlap with known classes
- Training was not required to "pull them out" so that they could be discriminated

Similar Results from Other Groups

35

The Familiarity Hypothesis

The network doesn't detect novelty, it detects the absence of familiarity

- Convolutional neural network learns "features" that detect image patches relevant to the classification task
- The logit layer weights these features to make the classification decision
- Novel classes activate fewer of these features, so their activation vectors are smaller
- Hypothesis: The networks don't detect that an elephant is novel because of trunk and tusks but because its head doesn't activate known features

Initial Evidence

• Maximum logit is better than max softmax probability or the norm of z

Vaze, et al. 2021

Initial Evidence (2)

- CIFAR 10: 6 known classes; 4 novel classes
- DenseNet (z has 324 dimensions)
- Activation threshold θ
- Count number of features whose activation exceeds $\boldsymbol{\theta}$
- OOD images activate fewer features

Alex Guyer (unpublished)

Max Sum of Positive Contributions

• Let w_k be the vector of weights for the logit of class k

 $\ell_k = w_k \cdot z$

 Define the *contribution* of feature *j* to the logit for class *k*

 $c_{jk} = w_{jk} z_j$

- Sort in ascending order
- Sum of positive contributions

$$s_k = \sum_j \max(0, c_{jk})$$

• Claim: $\max_k s_k$ will be an even better anomaly detector than max logit

CONTINUETIONS Contributions: Features that predict class k Mean and variance of unit contributions: Negative contributions: Features that predict other classes

Positive

Sun & Li (2021) Did almost this experiment

- DICE anomaly score: sum of the top 10% of the contributions
 - MSP: $\max_k \hat{P}(y = k | x)$
 - Energy: $\log \sum_k \exp \ell_k$
 - ODIN and G-ODIN modify the Softmax
- Sun & Li (2021) "On the Effectiveness of Sparsification for Detecting the Deep Unknowns" arXiv 2111.09805

Can we expect computer vision systems to perceive things they have not been trained on?

- Colin Blakemore and Grahame F. Cooper. "Development of the brain depends on the visual environment." *Nature* (1970): 477-478.
 - Kittens raised in environments with only horizontal or only vertical lines
 - "They were virtually blind for contours perpendicular to the orientation they had experienced."

Source: Li Yang Ku https://computervisionblog.wordpress.com/2013/06/01/cats-and-vision-is-vision-acquired-or-innate/

Possible Paths Forward

- Train on as many object categories as possible
 - Training on snakes might allow detection of trunks
- Systematically synthesize "natural parts"
 - Could we synthesize tusks, trunks if we had never seen them before?
 - Train on these to develop feature detectors for them
- Could a system detect "interesting image content" that was not activating learned features?

Summary

Classic Anomaly Detection Methods

- Distance
- Density estimation
- Density quantile estimation
- Reconstruction

Computer Vision Methods

- Well-trained Classifier works as well as deep anomaly detection methods
- Familiarity Hypothesis explains this and suggests improvements

Citations

- Bendale, A., & Boult, T. (2016). Towards Open Set Deep Networks. In CVPR 2016 (pp. 1563–1572). http://doi.org/10.1109/CVPR.2016.173
- Blakemore, C., & Cooper, G. F. (1970). Development of the brain depends on the visual environment. *Nature, 228*(5270), 477–478. https://doi.org/10.1038/228477a0
- Breunig, M. M., Kriegel, H., Ng, R. T., & Sander, J. (2000). LOF: Identifying Density-Based Local Outliers. ACM SIGMOD 2000 International Conference on Management of Data, 1–12.
- Chen, R. T. Q., Behrmann, J., Duvenaud, D., & Jacobsen, J.-H. (2019). Residual Flows for Invertible Generative Modeling. ArXiv, 1906.02735(v1), 1–18. http://arxiv.org/abs/1906.02735
- Chen, G., Peng, P., Wang, X., & Tian, Y. (2021). Adversarial Reciprocal Points Learning for Open Set Recognition. *IEEE Transactions* on Pattern Analysis and Machine Intelligence, 1–17. <u>https://doi.org/10.1109/TPAMI.2021.3106743</u>
- Emmott, A. F., Das, S., Dietterich, T., Fern, A., & Wong, W. (2013). Systematic Construction of Anomaly Detection Benchmarks from Real Data. KDD 2013 Workshop on Outlier Detection (ODD-2013), 6.
- Emmott, A. F. (2020). A Benchmarking Study of Unsupervised Anomaly Detection Algorithms. MS Thesis. School of EECS, Oregon State University.
- Guha, S., Mishra, N., Roy, G., & Schrijvers, O. (2016). Robust Random Cut Forest Based Anomaly Detection On Streams. *Proceedings* of The 33rd International Conference on Machine Learning, 48. http://jmlr.org/proceedings/papers/v48/guha16.pdf
- Kim, J., & Scott, C. D. (2012). Robust Kernel Density Estimation. *Journal of Machine Learning Research*, 13, 2529–2565.

Citations (2)

- Kriegel, H.-P., Schubert, M., & Zimek, A. (2008). Angle-based outlier detection in high-dimensional data. Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 444–452. https://doi.org/10.1145/1401890.1401946
- Larios, N., Soran, B., Shapiro, L., Martínez-Muños, G., Lin, J., Dietterich, T. G. (2010). Haar Random Forest Features and SVM Spatial Matching Kernel for Stonefly Species Identification. *IEEE International Conference on Pattern Recognition (ICPR-2010).*
- Lan, C. Le, & Dinh, L. (2020). Perfect density models cannot guarantee anomaly detection. ArXiv, 2012.03808(v1), 1–15. http://arxiv.org/abs/2012.03808
- Lee, K., Lee, K., Lee, H., & Shin, J. (2018). A simple unified framework for detecting out-of-distribution samples and adversarial attacks. Advances in Neural Information Processing Systems, NeurIPS2018, 7167–7177. <u>http://arXiv.org/abs/1807.03888</u>
- Lin, J., Larios, N., Lytle, D., Moldenke, A., Paasch, R., Shapiro, L., Todorovic, S., Dietterich, T. (2011). Fine-Grained Recognition for Arthropod Field Surveys: Three Image Collections. *First Workshop on Fine-Grained Visual Categorization (CVPR-2011)*
- Liu, S., Garrepalli, R., Dietterich, T. G., Fern, A., & Hendrycks, D. (2018). Open Category Detection with PAC Guarantees. Proceedings of the 35th International Conference on Machine Learning, PMLR, 80, 3169–3178. <u>http://proceedings.mlr.press/v80/liu18e.html</u>
- Liu, S., Garrepalli, R., Hendrycks, D., Fern, A., & Hendrycks, D., Dietterich, T. G. (to appear) PAC Guarantees and Effective Algorithms for Detecting Novel Categories. *Journal of Machine Learning Research.*
- Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2008). Isolation Forest. 2008 Eighth IEEE International Conference on Data Mining, 413–422. https://doi.org/10.1109/ICDM.2008.17
- Lytle, D. A., Martínez-Muñoz, G., Zhang, W., Larios, N., Shapiro, L., Paasch, R., Moldenke, A., Mortensen, E. A., Todorovic, S., Dietterich, T. G. (2010). Automated processing and identification of benthic invertebrate samples. *Journal of the North American Benthological Society*, 29(3), 867-874.

Citations (3)

- Pevný, T. (2015). Loda: Lightweight on-line detector of anomalies. Machine Learning, November 2014. https://doi.org/10.1007/s10994-015-5521-0
- Pomerleau, D. A. (1993). Input Reconstruction Reliability Estimation. Proceedings of NIPS 1993, 279–286.
- Rudd, E. M., Jain, L. P., Scheirer, W. J., & Boult, T. E. (2017). The Extreme Value Machine. ArXiv, 1506.06112, 1–12. https://doi.org/10.1109/TPAMI.2017.2707495
- Ruff, L., Vandermeulen, R. A., Shoaib, D., Binder, A., Emmanuel, M., & Kloft, M. (2018). Deep One-Class Classification. International Conference on Machine Learning (ICML 2018), 10.
- Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., & Williamson, R. C. (2001). Estimating the support of a high-dimensional distribution. Neural Computation, 13(7), 1443–1471. <u>https://doi.org/10.1162/089976601750264965</u>
- Sun, Y., & Li, Y. (2021). On the Effectiveness of Sparsification for Detecting the Deep Unknowns. *ArXiv*, 2111.09805(v1). http://arxiv.org/abs/2111.09805
- Tack, J., Mo, S., Jeong, J., & Shin, J. (2020). CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances. Advances in Neural Information Processing Systems (NeurIPS 2020).
- Tax, D., & Duin, R. (2004). Support vector data description. *Machine Learning*, 45–66. http://link.springer.com/article/10.1023/B:MACH.0000008084.60811.49
- Vaze, S., Han, K., Vedaldi, A., & Zisserman, A. (2021). Open-Set Recognition: A Good Closed-Set Classifier is All You Need. ArXiv, 2110.06207(v1), 1–23. http://arxiv.org/abs/2110.06207
- Wagstaff, K. L., Lanza, N. L., Thompson, D. R., Dietterich, T. G., & Gilmore, M. S. (2013). Guiding Scientific Discovery with Explanations using DEMUD. AAAI 2013.
- Zhang, H., Li, A., Guo, J., & Guo, Y. (2020). Hybrid Models for Open Set Recognition. ArXiv, 2003.12506(v1), 1–17. http://arxiv.org/abs/2003.12506