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Motivating Example: Automated Counting of 
Freshwater Macroinvertebrates
• Goal: Assess the health of freshwater streams
• Method: 

• Collect specimens via kicknet
• Photograph in the lab
• Classify to genus and species

• BugID Project
• 54 classes of interest to the EPA 
• accuracy ≈ 90%
• Larios, N., Soran, B., Shapiro, L., Martínez-Muños, G., Lin, J., Dietterich, T. G. (2010). 

Haar Random Forest Features and SVM Spatial Matching Kernel for Stonefly Species 
Identification. IEEE International Conference on Pattern Recognition (ICPR-2010). 

• Lin, J., Larios, N., Lytle, D., Moldenke, A., Paasch, R., Shapiro, L., Todorovic, S., 
Dietterich, T. (2011). Fine-Grained Recognition for Arthropod Field Surveys: Three 
Image Collections. First Workshop on Fine-Grained Visual Categorization (CVPR-2011)

• Lytle, D. A., Martínez-Muñoz, G., Zhang, W., Larios, N., Shapiro, L., Paasch, R., 
Moldenke, A., Mortensen, E. A., Todorovic, S., Dietterich, T. G. (2010). Automated 
processing and identification of benthic invertebrate samples. Journal of the North 
American Benthological Society, 29(3), 867-874.
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Problem: There are species of 
freshwater insects worldwide
• 1,200 species in US
• Field samples may contain other things

• leaves
• trash

• Simple estimate of equal error rate for 
novel classes vs. the 54 classes was 
20% (in 2011)

• classifier is not usable without addressing 
the novel class problem

• Open Category Problem
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Open Set/OOD Classification Problem

• Arises in any application of 
classification in an open world

• Novel obstacles in self-driving cars
• Novel diseases in medical imaging
• Novel products in online marketplaces
• Novel cyber attacks

• Claim: Every deployed ML classifier 
should include a competence model 
that can detect when new queries are 
far from the training data

AD4SD 4

𝑥௤

Competence
Model

comp 𝑥௤ > 𝜏?

Classifier 𝑓

Training 
Examples

(𝑥௜, 𝑦௜) yes

𝑦ො = 𝑓(𝑥௤)

no reject



Two Problem Formulations: 
OOD and Open Category
Out-of-Distribution Problem

• Training:
• Data: ଵ ଵ ே ே drawn from ଴

• ௜

• Testing:
• Data: Mixture ௠ of data from ଴ and ௔
• ௔ belong to a different data set

• Goal:
• Given a query ௤, does it belong to ௔ or 

଴?
• If from ௔, REJECT as alien
• Else classify using a classifier trained on 

଴ data

Novel Category / Open Set Problem

• Training:
• Data: ଵ ଵ ே ே drawn from ଴

• ௜

• Testing:
• Data: Mixture ௠ of data from ଴ and ௔
• ௔ belong to new classes not 

seen during training (“alien categories”)
• Goal:

• Given a query ௤, does it belong to ௔ or 
଴?

• If from ௔, REJECT as alien
• Else classify using a classifier trained on 

଴ data
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OOD and Novel Category Metrics

• AUROC: Area under the ROC curve for the binary decision
• OOD: Domain A vs Domain B
• Novel Category: Known vs Unknown
• We treat the anomalies as the positive class

• Detection rate at fixed false alarm rate. Maximize TPR@10%FPR
• Maximize correct OOD/Novel Category detections subject to a constraint that 

the false positive rate is 0.10.

• False alarm rate at fixed missed alarm rate: Minimize FPR@95%TPR
• Detect 95% of OOD/Novel Category examples while minimizing false positives
• Most relevant to AI Safety and Trustworthy Systems
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Outline

• Theoretical Approaches to Anomaly Detection
• Deep Anomaly Detection in Computer Vision
• Anomaly Detection based on Supervised Classifier Logit Scores
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Theoretical Approaches to Anomaly Detection

• Distance-Based Methods
• Anomaly score 

௤
௫∈஽

௤

• Density Estimation Methods
• Surprise: ௤ ஽ ௤

• Model the joint distribution ஽ of 
the input data points ଵ

• Quantile Methods
• Find a smooth function such that 

contains of the 
training data

• Anomaly score 

• Reconstruction Methods
• Train an auto-encoder: , 

where is the encoder and is the 
decoder

• Anomaly score

௤ ௤ ௤
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Approach 1: Distance-Based Methods

• Define a distance ௜ ௝

• ௤
௫∈஽

௤

• Requires a good distance metric 𝑥௤

𝑥௤
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Isolation Forest [Liu, Ting, Zhou, 2011]

• Approximates L1 Distance 
• (Guha, et al., ICML 2016)

• Construct a fully random binary tree
• choose attribute at random
• choose splitting threshold uniformly 

from ⋅௝ ⋅௝

• until every data point is in its own leaf
• let ௜ be the depth of point ௜

• repeat times
• let ௜ be the average depth of ௜

• ௜

ି
೏ഥ ೣ೔
ೝ ೣ೔

• 𝑟(𝑥௜) is the expected depth 
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Approach 2: Density Estimation
• Given a data set ଵ ே where ௜

ௗ

• We assume the data have been drawn iid
from an unknown probability density: ௜

௜

• Goal: Estimate 

• Anomaly Score: ௤ ௤

• “surprisal” from information theory

• Why density estimation?
• Gives a more global view by combining distances 

to all data points
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Example: LODA (Pevny, 2015)

• Introduce random projections ௟
into 1-dimensional space

• Fit a density estimator ௟ ௟ in 
each 1-d space

•
ଵ

௅ ௟ ௟ ௤
௅
௟ୀଵ
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Approach 3: Quantile Methods
• Vapnik’s principle: We only need to 

estimate the “decision boundary” 
between nominal and anomalous

• Surround the data by a function that 
captures of the training data

• One-Class Support Vector Machine 
(OCSVM)

• 𝑓 is a hyperplane in “kernel space”
• Support Vector Data Description (SVDD)

• 𝑓 is a sphere is “kernel space”

• Issue
• Need to choose at learning time rather 

than run time
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Approach 4: Reconstruction Methods

Autoencoders
• Encoder: 
• Decoder: 

14
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Linear Autoencoder == 
Principal Component Analysis

• PCA:
• Let the input dimension be 
• Choose a latent dimension 
• Find the matrix that minimizes the 

squared reconstruction error
•

ௐ
௜

ୃ
௜

ଶ
௜

• This can be done using the Singular Value 
Decomposition

• It can also be viewed as fitting a multi-variate 
Gaussian to the data and then keeping only the ℓ
dimensions of highest variance

15

ht
tp

s:
//

w
w

w
.jo

yo
fd

at
a.

de
/b

lo
g/

ill
us

tr
at

io
n-

of
-p

rin
ci

pa
l-c

om
po

ne
nt

-a
na

ly
si

s-
pc

a/

AD4SD



Application: Finding Unusual Chemical Spectra

• NASA Mars Science Laboratory 
ChemCam instrument

• Collects 6144 spectral bands on rock 
samples from 7m distance using laser 
stimulation

• Goal: active learning to find interesting 
spectra

• DEMUD
• Incremental PCA applied to samples one at a 

time
• Fit only to the samples labeled as 

“uninteresting” by the user
• Show the user the most un-uninteresting 

sample (sample with highest PCA 
reconstruction error)

• Rapidly discovers interesting samples
• Wagstaff, et al. (2013)
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Benchmarking Study
[Andrew Emmott, 2015, 2020]

• Distance-Based Methods
• k-NN: Mean distance to -nearest neighbors
• LOF: Local Outlier Factor (Breunig, et al., 2000)
• ABOD: kNN Angle-Based Outlier Detector (Kriegel, et al., 2008)
• IFOR: Isolation Forest (Liu, et al., 2008)

• Density-Based Approaches
• RKDE: Robust Kernel Density Estimation (Kim & Scott, 2008)
• EGMM: Ensemble Gaussian Mixture Model (our group)
• LODA: Lightweight Online Detector of Anomalies (Pevny, 2016)

• Quantile-Based Methods
• OCSVM: One-class SVM (Schoelkopf, et al., 1999)
• SVDD: Support Vector Data Description (Tax & Duin, 2004)
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Benchmarking Methodology

• Select 19 data sets from UC Irvine repository
• Choose one or more classes to be “anomalies”; the rest are 

“nominals”
• Manipulate

• Relative frequency
• Point difficulty 
• Irrelevant features
• Clusteredness

• 20 replicates of each configuration
• Result: 11,888 Non-trivial Benchmark Datasets
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Analysis of Variance

• Linear ANOVA
•

஺௎஼

ଵ ି஺௎
• rf: relative frequency
• pd: point difficulty
• cl: normalized clusteredness
• ir: irrelevant features
• mset: “Parent” set
• algo: anomaly detection algorithm

• Assess the algo effect while controlling for all other factors
• : area under the ROC curve for the nominal vs. anomaly binary 

decision
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• 19 UCI Datasets
• 9 Leading “feature-based” algorithms
• 11,888 non-trivial benchmark datasets
• Mean AUC effect for “nominal” vs. “anomaly” decisions

• Controlling for
• Parent data set
• Difficulty of individual queries
• Fraction of anomalies
• Irrelevant features
• Clusteredness of anomalies

• Baseline method: Distance to nominal mean (“tmd”)
• Best methods: K-nearest neighbors and Isolation Forest 
• Worst methods: Kernel-based OCSVM and SVDD

Benchmarking Study Results

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Mean AUC Effect

20AD4SD



Outline

• Theoretical Approaches to Anomaly Detection
• Deep Anomaly Detection in Computer Vision
• Anomaly Detection based on Supervised Classifier Logit Scores
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Deep Anomaly Detection in Image Classification

• Input image 
• Network backbone, also 

called the “encoder”: 

• Latent representation 
• Logits ௞ ௞

ୃ

• Predicted probabilities

௞

௞ᇲ௞ᇲ

22

Convolutional Neural Network Classifier

Image
𝑥

Penultimate Layer 𝑧 Logits ℓ௞ = 𝑤௞
ୃ𝑧

Probabilities
𝑝̂(𝑦 = 𝑘|𝑥)

𝑝̂(𝑦 = 𝑘|𝑥)
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Approach 1: Distance-Based Methods

• Using k nearest neighbors in the space does not work well in our 
experience
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Approach 2: Density Estimation Methods

• Deep Density Estimation: Seeks to model in the image space
• These have not worked well
• Le Lan & Dinh (2021) show that the representation is critical for density 

estimation. The image space lacks an appropriate “neighborhood structure”

• Methods that fit a classifier and then estimate a density 
• Open Hybrid (Zhang, Li, Guo, Guo, 2020)
• Mahalanobis (Lee, Lee, Lee, Shin, 2018)
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Open Hybrid: Classification + Density Estimation
(Zhang, Li, Guo, Guo, 2020)

• Residual Flow Deep Density Estimator 
• (Chen, Behrmann, Duvenaud, et al. NeurIPS 2019)

• Standard Cross-Entropy Supervised Loss
• Claim: This helps focus 𝑃 𝑥 on relevant aspects of the images

• Anomaly Score: 𝐴 𝑥௤ = − log 𝑃(𝑥௤)
25AD4SD



Open Hybrid Results

• 6 Known and 4 
Unknown classes

• 4 Known and many 
unknown classes 
drawn from CIFAR-
100

26

AUC MNIST SVHN CIFAR-10

1 − max
௞

𝑝̂ 𝑦 = 𝑘 𝑥௤ 0.978 0.886 0.677

OpenHybrid: − log 𝑃 𝑥௤ 0.995 0.947 0.883

AUC CIFAR+10 CIFAR+50

1 − max
௞

𝑝̂ 𝑦 = 𝑘 𝑥௤ 0.816 0.805

OpenHybrid: − log 𝑃 𝑥௤ 0.962 0.955
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Approach 3: Density Quantile Methods: Deep SVDD
(Ruff, et al. ICML 2018)

• The method is somewhat tricky to work with
• Set as the mean of a small set of points passed through the untrained 

network
• No bias weights
• These help prevent “hypersphere collapse”
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Approach 4: Reconstruction Methods

• NavLab self-driving van (Pomerleau, 1992)
• Primary head: Predict steering angle from input 

image
• Secondary head: Predict the input image (“auto-

encoder”)
• ௤ ௤ ௤

• If reconstruction is poor, this suggests that the 
steering angle should not be trusted

• Principle: Anomaly Detection through 
Failure

• Define a task on which the learned system 
should fail for anomalies

28

Pomerleau, NIPS 1992
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Deep Autoencoders

• These have generally not worked well for anomaly detection
• It is difficult to keep the autoencoder from learning to be a general 

image compression algorithm
• It doesn’t fail on novel images!
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Outline

• Theoretical Approaches to Anomaly Detection
• Deep Anomaly Detection in Computer Vision
• Anomaly Detection based on Supervised Classifier Logit Scores
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A Surprising Finding:
Deep Classifiers Achieve Excellent Anomaly Detection

• Vaze, Han, Vedaldi, Zisserman (2020): 
“Open Set Recognition: A Good Classifier 
is All You Need” 

• arXiv 2110.06207
• Carefully train a classifier using the latest 

tricks
• Standard cross-entropy combined with the 

following:
• Cosine learning rate schedule
• Learning rate warmup
• RandAugment augmentations
• Label Smoothing

• Anomaly score: max logit
• ௞ ௞

AD4SD 31

50

55

60

65

70

75

80

85

90

95

100

AU
RO

C

ARPL+CS+

Cross-entropy+

OpenHybrid

ARPL+CS

Basic Cross-
entropy

Protocol from Neal et al. (2018)



Vaze, et al.: Three Large Open Set Benchmarks

• Novel class difficulty based on 
semantic distance

• CUB: Bird species
• Air: Aircraft
• ImageNet
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Why?
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How are open set images represented by 
deep learning?

• DenseNet with 384-dimensional latent 
space.  

• CIFAR-10: 6 known classes, 4 novel 
classes

• UMAP visualization

• Light green: novel classes

• Darker greens: known classes

• Note that many novel classes stay 
toward the center of the space; others 
overlap with known classes

• Training was not required to “pull them 
out” so that they could be discriminated

34

Alex Guyer
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Similar Results from Other Groups
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The Familiarity Hypothesis

• Convolutional neural network learns “features” 
that detect image patches relevant to the 
classification task

• The logit layer weights these features to make 
the classification decision

• Novel classes activate fewer of these features, 
so their activation vectors are smaller

• Hypothesis: The networks don’t detect that an 
elephant is novel because of trunk and tusks but 
because its head doesn’t activate known 
features
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The network doesn’t detect 
novelty, it detects the 
absence of familiarity



Initial Evidence

• Maximum logit is better than 
max softmax probability or the 
norm of 
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Initial Evidence (2)

• CIFAR 10: 6 known classes; 4 novel 
classes

• DenseNet ( has 324 dimensions)
• Activation threshold 
• Count number of features whose 

activation exceeds 
• OOD images activate fewer 

features
Alex Guyer (unpublished)

AD4SD 38



Max Sum of Positive Contributions

• Let ௞ be the vector of weights for the 
logit of class 

ℓ௞ = 𝑤௞ ⋅ 𝑧

• Define the contribution of feature to 
the logit for class 

𝑐௝௞ = 𝑤௝௞𝑧௝

• Sort in ascending order
• Sum of positive contributions

𝑠௞ = ෍ max 0, 𝑐௝௞

௝

• Claim: ௞ ௞ will be an even better 
anomaly detector than max logit
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Positive 
contributions: 
Features that 
predict class 𝑘

Mean and variance of unit contributions:

Negative 
contributions: 

Features that predict 
other classes



Sun & Li (2021) Did almost this experiment

• DICE anomaly score: sum of the top 
10% of the contributions

• MSP: ௞

• Energy: ௞௞

• ODIN and G-ODIN modify the Softmax

• Sun & Li (2021) “On the Effectiveness 
of Sparsification for Detecting the 
Deep Unknowns” arXiv 2111.09805
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Can we expect computer vision systems to 
perceive things they have not been trained on?
• Colin Blakemore and Grahame F. 

Cooper. “Development of the brain 
depends on the visual environment.” 
Nature (1970): 477-478.

• Kittens raised in environments with only 
horizontal or only vertical lines

• “They were virtually blind for contours 
perpendicular to the orientation they had 
experienced.”

Source: Li Yang Ku
https://computervisionblog.wordpress.com/2013/06/01/cats-and-vision-is-vision-acquired-or-innate/
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Possible Paths Forward

• Train on as many object categories as possible
• Training on snakes might allow detection of trunks

• Systematically synthesize “natural parts”
• Could we synthesize tusks, trunks if we had never seen them before?
• Train on these to develop feature detectors for them

• Could a system detect “interesting image content” that was not 
activating learned features?
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Summary

Classic Anomaly Detection Methods
• Distance
• Density estimation
• Density quantile estimation
• Reconstruction

Computer Vision Methods
• Well-trained Classifier works as 

well as deep anomaly detection 
methods

• Familiarity Hypothesis explains 
this and suggests improvements

AD4SD 43



Citations
• Bendale, A., & Boult, T. (2016). Towards Open Set Deep Networks. In CVPR 2016 (pp. 1563–1572). 

http://doi.org/10.1109/CVPR.2016.173
• Blakemore, C., & Cooper, G. F. (1970). Development of the brain depends on the visual environment. Nature, 228(5270), 477–478. 

https://doi.org/10.1038/228477a0
• Breunig, M. M., Kriegel, H., Ng, R. T., & Sander, J. (2000). LOF: Identifying Density-Based Local Outliers. ACM SIGMOD 2000 

International Conference on Management of Data, 1–12.
• Chen, R. T. Q., Behrmann, J., Duvenaud, D., & Jacobsen, J.-H. (2019). Residual Flows for Invertible Generative Modeling. ArXiv, 

1906.02735(v1), 1–18. http://arxiv.org/abs/1906.02735
• Chen, G., Peng, P., Wang, X., & Tian, Y. (2021). Adversarial Reciprocal Points Learning for Open Set Recognition. IEEE Transactions 

on Pattern Analysis and Machine Intelligence, 1–17. https://doi.org/10.1109/TPAMI.2021.3106743
• Emmott, A. F., Das, S., Dietterich, T., Fern, A., & Wong, W. (2013). Systematic Construction of Anomaly Detection Benchmarks from 

Real Data. KDD 2013 Workshop on Outlier Detection (ODD-2013), 6.
• Emmott, A. F. (2020). A Benchmarking Study of Unsupervised Anomaly Detection Algorithms. MS Thesis. School of EECS, Oregon 

State University.
• Guha, S., Mishra, N., Roy, G., & Schrijvers, O. (2016). Robust Random Cut Forest Based Anomaly Detection On Streams. Proceedings 

of The 33rd International Conference on Machine Learning, 48. http://jmlr.org/proceedings/papers/v48/guha16.pdf
• Kim, J., & Scott, C. D. (2012). Robust Kernel Density Estimation. Journal of Machine Learning Research, 13, 2529–2565.

44AD4SD



Citations (2)
• Kriegel, H.-P., Schubert, M., & Zimek, A. (2008). Angle-based outlier detection in high-dimensional data. Proceedings of the 14th 

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 444–452. 
https://doi.org/10.1145/1401890.1401946

• Larios, N., Soran, B., Shapiro, L., Martínez-Muños, G., Lin, J., Dietterich, T. G. (2010). Haar Random Forest Features and SVM Spatial 
Matching Kernel for Stonefly Species Identification. IEEE International Conference on Pattern Recognition (ICPR-2010). 

• Lan, C. Le, & Dinh, L. (2020). Perfect density models cannot guarantee anomaly detection. ArXiv, 2012.03808(v1), 1–15. 
http://arxiv.org/abs/2012.03808

• Lee, K., Lee, K., Lee, H., & Shin, J. (2018). A simple unified framework for detecting out-of-distribution samples and adversarial 
attacks. Advances in Neural Information Processing Systems, NeurIPS2018, 7167–7177. http://arXiv.org/abs/1807.03888

• Lin, J., Larios, N., Lytle, D., Moldenke, A., Paasch, R., Shapiro, L., Todorovic, S., Dietterich, T. (2011). Fine-Grained Recognition for 
Arthropod Field Surveys: Three Image Collections. First Workshop on Fine-Grained Visual Categorization (CVPR-2011)

• Liu, S., Garrepalli, R., Dietterich, T. G., Fern, A., & Hendrycks, D. (2018). Open Category Detection with PAC Guarantees. Proceedings 
of the 35th International Conference on Machine Learning, PMLR, 80, 3169–3178. http://proceedings.mlr.press/v80/liu18e.html

• Liu, S., Garrepalli, R., Hendrycks, D., Fern, A., & Hendrycks, D., Dietterich, T. G. (to appear) PAC Guarantees and Effective Algorithms 
for Detecting Novel Categories. Journal of Machine Learning Research.

• Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2008). Isolation Forest. 2008 Eighth IEEE International Conference on Data Mining, 413–422. 
https://doi.org/10.1109/ICDM.2008.17

• Lytle, D. A., Martínez-Muñoz, G., Zhang, W., Larios, N., Shapiro, L., Paasch, R., Moldenke, A., Mortensen, E. A., Todorovic, S., 
Dietterich, T. G. (2010). Automated processing and identification of benthic invertebrate samples. Journal of the North American 
Benthological Society, 29(3), 867-874.

45AD4SD



Citations (3)
• Pevný, T. (2015). Loda: Lightweight on-line detector of anomalies. Machine Learning, November 2014. https://doi.org/10.1007/s10994-015-5521-0

• Pomerleau, D. A. (1993). Input Reconstruction Reliability Estimation. Proceedings of NIPS 1993, 279–286. 

• Rudd, E. M., Jain, L. P., Scheirer, W. J., & Boult, T. E. (2017). The Extreme Value Machine. ArXiv, 1506.06112, 1–12. 
https://doi.org/10.1109/TPAMI.2017.2707495

• Ruff, L., Vandermeulen, R. A., Shoaib, D., Binder, A., Emmanuel, M., & Kloft, M. (2018). Deep One-Class Classification. International Conference on 
Machine Learning (ICML 2018), 10.

• Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., & Williamson, R. C. (2001). Estimating the support of a high-dimensional distribution. Neural 
Computation, 13(7), 1443–1471. https://doi.org/10.1162/089976601750264965

• Sun, Y., & Li, Y. (2021). On the Effectiveness of Sparsification for Detecting the Deep Unknowns. ArXiv, 2111.09805(v1). 
http://arxiv.org/abs/2111.09805

• Tack, J., Mo, S., Jeong, J., & Shin, J. (2020). CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances. Advances in Neural 
Information Processing Systems (NeurIPS 2020).

• Tax, D., & Duin, R. (2004). Support vector data description. Machine Learning, 45–66. 
http://link.springer.com/article/10.1023/B:MACH.0000008084.60811.49

• Vaze, S., Han, K., Vedaldi, A., & Zisserman, A. (2021). Open-Set Recognition: A Good Closed-Set Classifier is All You Need. ArXiv, 2110.06207(v1), 1–23. 
http://arxiv.org/abs/2110.06207

• Wagstaff, K. L., Lanza, N. L., Thompson, D. R., Dietterich, T. G., & Gilmore, M. S. (2013). Guiding Scientific Discovery with Explanations using DEMUD. 
AAAI 2013.

• Zhang, H., Li, A., Guo, J., & Guo, Y. (2020). Hybrid Models for Open Set Recognition. ArXiv, 2003.12506(v1), 1–17. http://arxiv.org/abs/2003.12506

46AD4SD


